

MICROCONTROLLERS TINI - TINY INTERNET INTERFACES Oct 10, 2003

App Note 2777: Using Keil's MON390 Program with the
TINIm400

C programming with the DS80C400 microcontroller requires the need for debugging.
One means of debugging is to use Keil’s MON390, a debugging program that runs
code on the target platform. In order to use the monitor, several configuration
options have to be considered. This application note outlines those considerations
and debugs a simple network program.

Introduction
When the DS80C400 Silicon Software was designed, it was decided that a suite of functionality should be
exposed that could be accessed by C programmers. With the aid of a few libraries, C programmers can
access the network stack, process manager, memory manager, and other useful functions burned into the
DS80C400's ROM. Naturally, the introduction of C programming also means the introduction of C
programs in need of debugging. One means of debugging is to use Keil's MON390, a debugging program
that runs code on the target platform. To use the monitor, several configuration options have to be
considered. This application note outlines those considerations and debugs a simple network program.

What You Need for this Demonstration
This application note was written for use with a TINIm400 board and TINIs400 socket, available on our
website at http://www.maxim-ic.com/sales/). Two serial cables are also needed. One serial cable is
attached to serial 0 on the TINIm400 board, and is used to read standard output from your programs. The
other serial cable should be attached to the TINIm400's serial 2 connector (located at J13 on the
TINIs400 socket), and needs to be attached through a gender changer and a null modem adapter. This
port will be used for communication with the monitor PC-side program. The image below shows a socket
and board connected to two serial cables (one with a null modem adapter), an Ethernet cable, and power.

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/37/ln/en
http://www.maxim-ic.com/sales/

Figure 1. Connectors needed for working with the monitor.

Please also make sure you have the latest version of the Keil µVision2 IDE downloaded (available at
www.keil.com). At the time this application note was written, the latest µVision2 IDE was version 2.37,
and the latest C Compiler was 7.07.

For an introduction to using the Keil tools with the DS80C400, you may want to read Application Note
613: Using the Keil C Compiler for the DS80C400. It gives a more thorough explanation on getting up and
running, and should be read before this application note.

Building and Loading the Monitor Onto the TINIm400 Board
The file mon400.hex must be built from the source available from Keil. With the compiler update version
7.07 (and later), a project is included that contains the monitor source. It is located in [Keil
Install]\C51\MON390\TINIm400. Open the project mon400.Uv2 and press F7 to build it. The file
mon400.hex should appear in the same directory. The monitor is configured to load into bank 47h (into
the flash), and uses the TINIm400's serial2 port to communicate with the monitor host at 115200 baud.

You can load the monitor executable by using the JavaKit program. JavaKit is part of the TINI SDK. The
latest version of the the TINI SDK is available at ftp://ftp.dalsemi.com/pub/tini/index.html. At the time of
this writing, version 1.13 was the latest released SDK. Please follow the instructions in the file
docs\Running_JavaKit.txt(also part of the TINI SDK download) for installing and running JavaKit. If you
have any problems getting up and running with JavaKit, you may want to search the TINI interest list

http://www.keil.com/
http://www.maxim-ic.com/appnotes.cfm/appnote_number/613
http://www.maxim-ic.com/appnotes.cfm/appnote_number/613
ftp://ftp.dalsemi.com/pub/tini/index.html

archives at ftp://lists.dalsemi.com/mailman/listinfo/tini. It is likely that someone else has had similar
problems, and has posted a solution online.

From JavaKit, open the serial port on your PC that will be communicating with the serial loader of the
DS80C400. This will be the PC serial port that is connected to the serial port located at J12 on the
TINIs400 socket. Once the port is open, click the RESET button and the DS80C400's loader prompt
should appear. The text of the loader prompt is:

 DS80C400 Silicon Software - Copyright (C) 2002 Maxim Integrated Products
 Detailed product information available at http://www.maxim-ic.com

 Welcome to the TINI DS80C400 Auto Boot Loader 1.0.1
 >

From here, select Load HEX file as TBIN from the File menu, and find the file mon400.hex. The load
should only take about 5 seconds and you should see the following message print:

 Loading file: C:\work\monitor\mon400.hex.
 Please wait... (ESC to abort.)
 Load complete.

Now back at the loader prompt, type 'E' and hit RETURN. No message should print, but the monitor
should be running at this point. We are now ready to start working with the Keil µVision2 IDE.

HelloWorld with the Keil Monitor
Keil has provided a simple, HelloWorld-style application with the source for the monitor. It is in the
Examples/Hello directory, and can be built and used with the monitor to quickly show its functionality.
However, this section walks through the configuration of a simple, new project for use with the Keil
monitor so that developers can use the monitor with their own projects.

1) Create a new project in the Keil µVision2 IDE. We've called ours hellomon. When prompted to
select a device, find the DS80C400 listed under Dallas Semiconductor. Click on the boxes that read
Use Extended Linker and Use Extended Assembler. Click OK to continue.

2) When the µVision2 IDE asks Copy Dallas DS80C390 Startup Code to Project Folder and Add File to
Project?, select No. We will supply our own startup code.

3) Copy the files startup400.a51 and main.c (available with the source files to this application note in
the subdirectory hellomon) to the folder where you opened this Keil project. From the µVision2 IDE,
open Target 1 and right click on Source Group 1. Select Add Files to Group 'Source Group 1'. Select
the file main.c and click Add. Go to the Add Files to Group 'Source Group 1' dialog again and
change the file filter to Asm Source File. Click the file startup400.a51, and click Add. You should
now be able to open the item 'Source Group 1' and see the source files listed.

ftp://lists.dalsemi.com/mailman/listinfo/tini

4) Open the file startup400.a51 by double clicking on it. Find the definition of USE_MONITOR, and set
it to 1. The line of code should now look like:

 $set (USE_MONITOR = 1)

Also make sure that XTALMULT is set to 1.

5) Right click on Target 1 and select Options for Target 'Target 1'. For memory model, choose Large:
Variables in XDATA. For Code Rom size, select Contiguous Mode: 16MB Program. Select the
check boxes for Use On-Chip Arithmetic Accelerator, Use Multiple DPTR registers, and 'far' memory
type support. For Off-chip Code memory, use a value of 0x200000 for Start and 0x70000 for Size.
Under Off-chip XDATA Memory, fill in the first entry with a Start value of 0x10000, and a Size value
of 0x3FFF.

Figure 2. Configuration options for step 5.

6) While still looking at the Options for Target 'Target 1' dialog, select the Debug tab. There are 2 radio
buttons at the top of this panel. One says Use Simulator, and the other says Use and is followed by
a drop-down list. Select the radio button on the right with the drop-down list. From the drop-down
list, select MON390: Dallas Contiguous Mode. Press the Settings button. Choose the serial port on
your PC that you have connected with serial2 on the TINIs400 socket. Set the baud rate to 115200,
and make sure the box marked Enable Serial Break is checked. You can now close the options
dialog.

Figure 3. Configuration options for the debugger.

7) Press F7 to build the project. It should build without errors.

8) With the monitor program running on the TINIm400 (see Building and Loading the Monitor onto the
TINIm400 board), go under the Debug menu and select Start/Stop Debug Session. On the left side
of the IDE, registers and SFR's should be displayed. The monitor is now running, and we are now
debugging.

9) Turn on the variable watch window by going under the View menu and selecting Watch & Call Stack
Window. Also enable the Memory Window and Symbol Window in the same way. In the symbol
window, select Mode to be Locals, and select Current to be MAIN. This shows you the addresses if
the local variables that are used in the main() method. In the memory window, type in i: 0x00 in
the edit box labeled Address. This window now shows you the values in the internal RAM. You can
match up the first few memory values with the registers r0 through r7 shows on the left.

Figure 4. Watch window as seen in the main() method.

Figure 5. Memory window set to watch internal RAM.

10) Go to the source file main.c and find the line
printf("DS80C400 Monitor Demonstration\r ")

Right click somewhere on that line and select Insert/Remove Breakpoint. A red box should appear
to the left of the code on that line. Now press F5 to run. It should stop at the breakpoint, and a
yellow arrow appears to show where in the code we currently are. Also at this point, our local
variables array, i, and j should appear in our watch window.

Press F10 to Step-Over to the next line of code. If you still have JavaKit open and connected to the
TINIs400's serial0 port, then the message "DS80C400 Monitor Demonstration" should have printed
to the JavaKit terminal. Continue to use F10 to step through the next few lines of code. Note the
variables in the watch list updating as new lines of code are run, and the changing of registers and
SFR's as well. Also, you can cross-reference the local variables to the memory window using the
addresses supplied in the symbol table.

To stop debugging, select Start/Stop Debug Session again from the Debug menu. You will need to
restart the monitor program by resetting the board through JavaKit (hit RESET and type 'E') or
power cycling the board. To interrupt running code (hit the STOP button), you need to enable the
second serial interrupt. You can do this as the first line of your hellomon program with the line:

 ES2 = 1;

However, you'll probably want this functionality for every program that you use the debugger for.
Open the monitor project again (mon400.Uv2) and find the line InitSerial: which follows the line $IF
(SERIAL = 2). Insert the line of code setb es2 near the end of the function, like this:

 orl T3CM, #040H ; Enable timer 3 to run
 orl SCON2,#002H ; Serial 2 transmit indicator set
 setb es2 ; THIS LINE ADDED!!!
 JMP MONSTART

Rebuild and reload the monitor. Now, in your hellomon application, insert a line into the while loop
at the end of the program:

 while(1)
 {
 i++;
 }

Now run the program again in the debugger. Press F5 to get past every breakpoint, and the
program should enter the infinite loop. Now press the stop button and look at the value of I in the
watch window. You can also step and watch the value of I increment.

Using DS80C400 Libraries with the Keil Monitor
When using the DS80C400 C Libraries in a program, there are some additional issues with using the Keil
monitor. Any application that uses one of the C Libraries should call the init_rom function, which writes
over the interrupt vector table. However, there is some data in the interrupt vector table that the monitor
requires. To correct for the alterations done by the init_rom function, applications should call the
function init_usekeilmonitor immediately after calling the init_rom function, but only when using
the monitor. To help make this more intuitive, the initialization library now contains a macro that will only
call the init_usekeilmonitor if the line

#define MONITOR

is present in the application. Follow along with a simple networked application to see how this is done.

1) Start a new application for a math server (it will receive 2 16-bit numbers and output their sum).
Follow steps 1 through 6 of the previous section to configure the projects for the proper memory
usage and for use of the monitor. Instead of the hellomon source code, though, use the
mathserver source code. It can be found in the archive of source for this application note1. Make
sure to also add the library files to the project for the DHCP library, the socket library, the task
scheduler, and the initialization library in the same way that you add the files startup400.a51 and
main.c. Alternatively, the project file for this project is available - you can just open this file and the
project is ready to go.

2) First, let's run the application without the monitor to see what it is doing. In the Project Target
Options (right click on Target 1), under the Output tab, select the Create HEX File checkbox and
select HEX-386 from the drop-down list. Make sure the line near the top of the application
#define MONITOR is commented out. The value of USE_MONITOR in the startup code can stay at
1. Press F7 to build the application. It should build with a number of warnings about functions being
uncalled. This refers to unused functions in the libraries, and can be ignored.

3) In JavaKit, load the generated hex file (in my case, it is mathserver.hex). After it has loaded, type in
B 20 <RETURN> and then X <RETURN>. The application should start running, and a few seconds
later, it should report the address it leases from a DHCP server.

4) From a command prompt, compile the file connect.java. This Java program is the client side of the
application. You can compile by simply typing:

javac connect.java

5) Now run the connect program on the PC. Use the IP address reported through JavaKit as your IP
address argument. The second argument is the port number, which should be 15555. Your
command line should look something like this:

 java connect 180.0.6.131 15555

The DS80C400 code will print out the numbers it receives in hex and decimal:

 T1 is 3241 and T2 is a747 (hex)
 T1 is 12865d and T2 is 42823d
 Total is 55688
 T1 is 78ed and T2 is ce1c (hex)
 T1 is 30957d and T2 is 52764d
 Total is 83721
 T1 is f2e6 and T2 is e49 (hex)
 T1 is 62182d and T2 is 3657d
 Total is 65839

The PC will verify that the sum is correct and print the message It's all good.

6) Stop the client and let's go back to the Keil IDE to do some debugging.

7) Look in the file main.c for the function init_rom. Note that immediately after this function is
called, the macro USE_KEIL_MONITOR is called. When the value MONITOR is not defined, this
macro does nothing. When the value MONITOR is defined (before the file rom400_init.h is
included), this macro calls a function that restores some settings wiped out by the call to
init_rom. Go to the top of the file main.c and uncomment the line #define MONITOR. Press F7
to build the project.

8) Load the monitor program using JavaKit and run it. Go to the Debug tab on the Project Options
window and make sure the correct COM port and baud rates are selected. Now start debugging
using the monitor. Set a breakpoint on the first printf statement of the main function, and press
F5 run to it. Now step through the functions in main() using the F10 key. When you step over the
line do_dhcp(), watch the output on JavaKit as the DS80C400 tries to get a DHCP address.

9) Set a breakpoint on the line if (temp != 0xFFFF) immediately after the call to recv in the function
tcp_test(). Press F5 to run and watch the output from JavaKit. Run the connect program when
prompted, and the debugger should hit the new breakpoint. You can now step through the loop.
Make sure you use the Go command (hit F5) to run from before the call to send until after the call
to recv. Network communications may fail from the monitor pausing the DS80C400's execution.

1ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/appnotes/monitor_appnote_source.zip

Limitations of Working with the Keil Monitor
There are currently some limitations to using the Keil monitor. Hopefully, these limitations will be reduced
or removed as Keil releases future versions of the monitor.

You must use a crystal multiplier (XTALMULT) of 1 when using the Keil monitor.

ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/appnotes/monitor_appnote_source.zip

The Keil monitor is not ideal for debugging network applications. The monitor stops all interrupts from
firing while waiting on the user to tell the application to continue, which can cause network traffic to be
missed. Ethereal (http://www.ethereal.com/) is a good tool for debugging network transmissions.

The monitor program and the Keil debugger may occasionally lose communication. Often, telling the
debugger program to Try Again will restore communication. If it doesn't, you will probably need to restart
the monitor program using JavaKit and start debugging again.

Conclusion
The Keil Monitor for Dallas Semiconductor contiguous mode parts is a usefu ltool for tracing through and
debugging source code. Combined with other methods such as setting output bits and writing debug
information to the serial port, the monitor is part of a suite of techniques for debugging applications written
for the DS80C400 processor.

Relevant Links
Source code for this appnote:
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/appnotes/monitor_appnote_source.zip

TINI Software Development Kit: http://www.ibutton.com/TINI/software/soft_order.html

Keil Software Development Tools: www.keil.com

High-Speed Microcontroller User's Guide: DS80C400 Supplement

C Library Project Homepage: ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/index.html

Java Development Kit Download Page: java.sun.com/j2se/downloads.html

Java Communications API: java.sun.com/products/javacomm/

Application Note 613: Using the Keil Tools with the DS80C400

More Information

DS80C400: QuickView -- Full (PDF) Data Sheet -- Free Samples

DSTINIM400: QuickView -- Full (PDF) Data Sheet

DSTINIS400: QuickView -- Full (PDF) Data Sheet

http://www.ethereal.com/
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/appnotes/monitor_appnote_source.zip
http://www.maxim-ic.com/TINIplatform.cfm
http://www.keil.com/
http://www.maxim-ic.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/index.html
http://java.sun.com/j2se/downloads.html
http://java.sun.com/products/javacomm/
http://www.maxim-ic.com/appnotes.cfm/appnote_number/613
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3609/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS80C400.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS80C400&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3743/ln/en
http://pdfserv.maxim-ic.com/en/ds/DSTINIM400.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3744/ln/en
http://pdfserv.maxim-ic.com/en/ds/DSTINIS-005-DSTINIS400.pdf

